
www.manaraa.com

REPORT

University of Tromsø, N-9037 Tromsø, Norway, Telephone +47 77 64 40 41, Telefax +47 77 64 45 80

Department of Computer Science
INSTITUTE OF MATHEMATICAL AND PHYSICAL SCIENCES

Computer Science Technical Report: 95-23 June 1995

An Introduction to the TACOMA
Distributed System

Version 1.0

Dag Johansen1 Robbert van Renesse2 Fred B. Schneider2

 1 University of Tromsø 2 Cornell University

www.manaraa.com

An Introduction to the TACOMA

Distributed System

 Version 1.0

www.manaraa.com

 Copyright the TACOMA Project, University of Tromsø and Cornell University. All rights reserved. No part of this docu-
ment may be reproduced or used for commercial purposes without prior written permission obtained from the TACOMA
project.

 Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy and distribute
this documentation for any non-commercial purpose, provided that the above copyright notice and the following two para-
graphs appear in all copies:

• In no event shall the University of Tromsø or Cornell University be liable to any party for direct, indirect, special, inci-
dental, or consequential damages arising out of the use of this documentation or the TACOMA software distribution,
even if the TACOMA project has been adviced of the possibility of such damage.

• The TACOMA project makes no warranty of any kind with regard to programs and examples contained in this docu-
ment and the TACOMA source distribution. The software provided hereunder is on an “as is” basis, and the TACOMA
project has no obligation to provide maintenance, support, updates, enhancements, or modifications.

 Copyright C 1995 by the TACOMA project

www.manaraa.com

Contents

Preface

Chapter 1 The TACOMA Project 1

1 Introduction 1
2 Agent Motivations 2
3 The TACOMA Approach 4
4 Scientific Problems 4
5 Relevant Work 5
6 Work in Progress 5
7 Outline 6

Chapter 2 The TACOMA Model and Its Basic Implementation 7

1 Introduction 7
2 Agents - The Computational Unit 7
3 Folders, Briefcases and Cabinets - Maintaining State 9
4 Meet - The Basic Abstraction 10
5 Where to Meet 10
6 Arriving at a New Place - The Bridge Head for the Arriving Agent 11
7 Optimize for RPC 13
8 Summary 13

Chapter 3 Getting Started 15

1 Introduction 15
2 A Simple Agent Example 16
3 Installing TACOMA and Relevant Software 18
3.1 Installing TACOMA 18
3.2 Running TACOMA 19
3.3 Run the First TACOMA Agent 20
3.4 Included Examples 22
4 Summary 22

www.manaraa.com

Chapter 4 The TACOMA API 23

1 Introduction 23
2 Programming the Internet - Folder Abstractions 23
3 Programming the Internet - Structuring Techniques 26
3.1 Jumping Around - A Sequence of Agents 26
3.2 Remote Activation 27
3.3 Client - Server Style of Computing 29
3.4 Optimize for RPC 30
3.5 Event Synchronization 31
3.6 Sharing Common State 33
3.7 Parallel Processing 34
4 Writing an Agent - An Example 36
5 Summary 37

References 39

www.manaraa.com

Preface

 The TACOMA (Tromsø And COrnell Moving Agents) project is concerned with how
to provide operating system support for agent based computing. We have developed a
prototype execution platform with a flexible mechanism for agent computations to
move and branch out in a networking environment.

 Several TACOMA implementations have been completed. This document provides an
introduction to TACOMA Version 1.0, a TACOMA version based on UNIX and Tcl-
TCP. We present the TACOMA project, the computational model, how to get started,
and the basic TACOMA abstractions. More elaborate system services and agent
applications not described here are under construction. We plan to include these in
later distributions of TACOMA.

 User feedback (including error reports) should be reported to <tacoma@cs.uit.no>.
Those interested in obtaining more information about TACOMA patches and further
distributions, should send an e-mail to the same address.

 TACOMA is a joint project between University of Tromsø and Cornell University.
Principal investigators are Dag Johansen (Tromsø), Robbert van Renesse (Cornell)
and Fred B. Schneider (Cornell). Students currently involved include Raymond
Andreassen, Kjell Irgens, John-Einar Jakobsen, Pål Knudsen, Scott Stoller and Nils
Peter Sudmann. Especially Nils Peter has contributed much to the current implemen-
tation and documentation of TACOMA Version 1.0.

 Those interested in getting started immediately should read chapter 3 briefly. Addi-
tional manual pages and concrete examples bundled with the source distribution
should be sufficient for writing and executing your first TACOMA agents. We assume
the reader is familiar with the very basics of UNIX and Tcl.

 Dag Johansen Robbert van Renesse Fred B. Schneider

 Tromsø, Norway, Ithaca, USA Ithaca, USA
 24th June 1995 24th June 1995 24th June 1995

www.manaraa.com

 1

Chapter 1

The TACOMA Project

Abstract

We are currently investigating networking agents for its use in large scale distributed
computing. This is organized in the TACOMA (Tromsø And COrnell Moving Agents)
project. This chapter presents the background of and the framework for the TACOMA
project.

1 Introduction

 The agent paradigm receives a lot of attention currently. An agent is most commonly a
software being acting on behalf of a human user. People are interested in how to specify the
behavior of agents, and how agents communicate with each other and with their human mas-
ters. Different types of agents exist [Riec 94]. Some are stationary in nature. Others use ser-
vices found in a networking environment. Such agents can roam the internet to accomplish
the tasks that the users are requesting, visiting site after site collecting information and pos-
sibly performing actions. Agents may also negotiate deals and/or services on behalf of their
users. Some of these networking agents are stationary processes, working from their user’s
workstation by connecting to remote services (such as ftp or finger) without actually moving
about. Other agents will actually travel into the internet, transfering their state from
machine to machine. It is this second type of networking agent in which we are particularly
interested. For short, we call them agents in the rest of this document.

 In the TACOMA project1, we focus on operating system issues in connection with agents.
We are interested in identifying and providing the system services this type of agent comput-
ing requires.

 We are also interested in how to structure agent applications in a networking environment.
Our thesis is that an agent should have the ability to change locality during its execution.
Nevertheless, general application issues, as found in [Riec 94], is a secondary issue in our
work.

1. For more information: URL: http://dslab3.cs.uit.no:1080/Tacoma/index.html

www.manaraa.com

 2

2 Agent Motivations

 We want to focus on four main motivations for the agent paradigm. First, potential perfor-
mance improvement is an important motivation. To start with, consider a common situation
where a client and a server are located on two different nodes. The server will typically
manage some local data. To carry out the computation, several network messages will often
have to be transferred back and forth between the two parties. This is illustrated in Figure 1.

FIGURE 1. A client-server interaction.

 We believe there can be performance advantages in moving a client computation to the
server side of this connection. This is why cycles are cheap and bandwidth is still a scarse
resource. This approach can be efficient for distributed applications that operate on large
data structures normally residing at the server side. We also believe that the amount of net-
work interactions can be reduced as a result of co-locating service requesters and service
providers heavily engaged in communication. Figure 2 illustrates this, where the client
computation moves to the server side of the connection.

FIGURE 2. Moving the computation close to the data.

 A second motivation for the agent model is that it is intuitive. Agents acting more or less
independently on behalf of somebody is a well-known concept. Co-locating a service
requester and a service provider is a real life metaphor well understood. This is an intuitive
and compelling approach for negotiation and collaboration purposes between these parties.
Figure 3 illustrates a similar situation as in Figure 2, but now the client itself does not move.
It sends a representative to the server side to do the actual computation. We call this repre-
sentative an agent. The agent will typically reduce the amount of data that has to be trans-
ferred over the network. In this example, the result is finally sent back to the client. This
remote filtering of data also reduces the need for voluminous client caching. Also, owner-
ship of data is better ensured by allowing controlled use of it. A service provider does not

Network traffic

Client Server

 Server

Network traffic

 Client Client

www.manaraa.com

 3

ship its data away, data that might be its source of income. Instead, controlled, accountable
access is allowed.

FIGURE 3. Agent sent to the server location.

 A third motivation for the agent paradigm is that communication is reduced to a site local
issue. The application programmer does not have to deal with complex networking syntax.
All that is needed, is to move, or co-locate, the agents that want to communicate. Locality of
agents are not hidden, but communication channels are. Contrast this with location transpar-
ency in a more traditional distributed system. As illustrated in Figure 4, an agent A that
wants to communicate with agent S, must be moved to the same site as S (or the other way
round). The (internet) operating system supports this moving. All that is needed is that
agent A must ask to be moved.

FIGURE 4. Co-locating communicating agents.

 Finally, we believe this model gives cleaner and simpler failure semantics. In a regular dis-
tributed system, the state between the client and the server is normally distributed. A failure
half-way through makes it tricky to ensure that both parties roll back their state so that con-
sistency is maintained. This is a much simpler problem when the state is centralized. A co-
located client and a server then implies failure atomicity where one does not have to deal
with complex external (independent) failure modes.

 Agent Server

Network traffic

 Client

S
A

Operating system

www.manaraa.com

 4

3 The TACOMA Approach

 We have started the TACOMA (Tromsø And COrnell Moving Agents) project to investi-
gate how to support agents in the internet. We are particularily interested in the issues of
fault-tolerance, scheduling and management, security, and accounting of agents.

 We have constructed a series of TACOMA prototype platforms supporting agents. These
implementations feature a flexible mechanism for computations to move and branch out.
The first implementation was entirely based on UNIX and a C-based implementation for
moving agents around. These agents were written in C and executed on a set of Sun work-
stations. The mechanism moving the agents around had functionality comparable to exist-
ing remote shell facilities as found in UNIX systems. Our approach far outweighted the
standard UNIX approach in performance. Nevertheless, by already having a UNIX way of
doing this, we decided to use the existing remote shell for the next implementation.

 The second TACOMA prototype was more general in nature by using UNIX remote shell
(rsh on the Sun, remsh on the HP workstations) as transport mechanism for moving
agents about. Such agents were still written in C, but we also experienced the simplicity and
power in using Bourne-shell syntax. Our first agents written were simple in functionality
and could be expressed in shell code.

 Bourne-shell syntax considered simple is an understatement. Nevertheless, we experi-
enced that interpretive languages seemed to provide sufficient functionality for the type of
agents we approached. A third prototype was now implemented in the interpretive language
Tcl [Oust 94]. The agents were also implemented in Tcl. Still we used remote shell facili-
ties provided by UNIX, a time-consuming operation for moving the agents about.

 A fourth prototype got rid of the UNIX remote shell dependency again. Tcl-TCP, a Tcl
extension supporting TCP communication, was used as platform for this TACOMA proto-
type. We can now transport an agent to another site more efficiently by using our own trans-
fer mechanism based on TCP. This is the version of TACOMA that we are making public
available, TACOMA Version 1.

 Other prototypes of TACOMA are currently under construction. A version based on Tcl-
DP has been implemented. Currently, HORUS [Rene 94] provides a UNIX independent
platform for a new TACOMA implementation. Focus is on fault-tolerance. This ATM
based version is still in a very experimental stage.

4 Scientific Problems

 We are studying two main problem areas in the TACOMA project. First, we focus on oper-
ating system support for agent based computing. Central problems include:

• Identifying the appropriate abstractions a distributed system should provide for agent
based computing.

• Providing an efficient implementation of these abstractions.

• Providing increased fault-tolerance of agents.

www.manaraa.com

 5

• Management (monitoring and control) of agents.

• Security issues, both securing the agent from the environment and securing the environ-
ment from the agent.

• Accounting issues, including applicability of electronic cash [Chau 92].

 Our second problem area is concerned with applicability of the agent model. We need to
identify applications lending itself naturally to this paradigm. As part of this, we need to
focus on how to structure applications based on the agent paradigm. These applications can
then be used to determine what is actually needed from the operating system.

5 Relevant Work

 Agent computing is trendy these days. Especially, applicability of this paradigm receives a
lot of attention [Riec 94]. A number of AI and World-Wide Web projects focus on agent
based computing. Language approaches also receives a lot of attention. This includes:

• General Magic and Telescript [Whit 94].

• Tcl [Oust 94] and derivatives as Safe-Tcl.

• Obliq [Card 95].

6 Work in Progress

 TACOMA Version 1 is kept to a bare minimum. It only contains core funtionality to
quickly get started building the first internet agents. A more complete version of TACOMA
containing more services is not complete for distribution yet. This work in progress (to be
distributed upon completion) includes:

• schedulers/broker services.

• firewall agents focusing on security aspects of arriving agents.

• agent management tools.

• active multi-media document support services.

• agent construction support services.

• parallel processing services.

• different agent based distributed applications. This includes re-engineered StormCast
services [Joha 93] [Joha 94].

 So far, we have used a rear guard agent approach [Joha 95] combined with logging tech-
niques for increased fault-tolerance of TACOMA agents. Fault-tolerance is our current
main focus, and a TACOMA version based on HORUS [Rene 94] is under construction. It
targets a highly fault-tolerant environment for internet agents.

www.manaraa.com

 6

7 Outline

 The rest of this document is organized as follows:

• Chapter 2 presents the computational model for networking agents. We will make our
model of agents more precise by introducing some well-known daily life concepts.

• Chapter 3 is a step-by-step explanation on how to install and get started with TACOMA.

• Chapter 4 summarizes the basic TACOMA system API. This includes the most vital
TACOMA system agents. We present some concrete examples of TACOMA applica-
tions and discuss how to structure an agent based application.

www.manaraa.com

 7

Chapter 2

The TACOMA Model and Its Basic Implementation

Abstract

This chapter introduces the TACOMA computational model. The
basic system support provided by TACOMA Version 1 is also pre-
sented. A mobile computation, an agent, can move around in a net-
working environment. We need concepts capturing the behavior of
the agent itself, but also concepts for the necessary support infra-
structure. We attempt to use daily life concepts in this model.

1 Introduction

 The client-server approach to distributed computing requires servers to be assigned to
nodes statically. A new paradigm is emerging where computations can move around freely.
This distributed computing paradigm is based on the idea of computations that act on behalf
of others.

 This paradigm, which we call networking agents, or just agents, is currently being
exploited for modernizing electronic mail, shopping, etc. It is also viewed as an appropriate
paradigm for negotiations between service providers and service requesters.

 The TACOMA project focusses on the agent paradigm for distributed computing. In this
section, we will introduce the model of our agent system. Simultaneously, we will introduce
our basic implementation of this model.

2 Agents - The Computational Unit

 First, we need a computational unit in our system. We use the concept agent for any such
computation. In chapter 1, we combined client-server concepts and the agent concept. This
was done for simplicity reasons. From now on, we make no overall distintion between a cli-
ent, a server and an agent. In our model, they would all be agents. Some agents never pro-
vide any service for others. Other agents are willing to provide services for others. Some
agents act on behalf of other agents, while others do not. Some agents always reside at a
node, while others can move about.

www.manaraa.com

 8

 From a low-level perspective, an agent is just a process, consisting of code and state. A
simple agent can be a short Tcl script, or a small C program. At the other extreme, complex
AI based agents [Riec 94] can be constructed.

 At the same time, we make a distinction between a process in Unix terminology and an
agent. A process is a sequence of instructions with some initial state. An agent is also a
sequence of instructions and some initial state, but all instructions do not have to be exe-
cuted on the same site.

 Figure 1 illustrates an agent application consisting of 3 separate parts, A, B and C. We will
later detail how to structure an agent application. For now, we can view an agent application
as a collection of smaller agents. As illustrated, the different parts of the application can be
processed throughout a network of nodes. The colored circle indicates active processing,
the white circle indicates presence of the agent, but it is not activated at that particular site.
Notice that A remains back on the first site while the rest of the application (including a copy
of A) moves about.

FIGURE 1. An agent application moving about.

 This mobility is an important characteristic of an agent. As such, it must be possible to
have agents that can move about. This sounds like process migration, but is different. The
difference lies in who decides when to move, the system or the application itself. In process
migration, this is normally forced upon a running process by the system. This can be an
expensive, complex and, sometimes, even impossible operation.

 In the agent model, the agent itself is in charge of deciding when to move. Still, as with
process migration, once a decision to move has been taken, the operating system must sup-
port this.

A C
B

A
C

site 1 site 1 site 2

B

A

site 1 site 2

.......C

site 3

B

A

A

t0 t1

t2

www.manaraa.com

 9

3 Folders, Briefcases and Cabinets - Maintaining State

 Agents must be able to manipulate on data. There is two aspects to this. First, an agent
must be able to leave data at a certain site. Such site-local data is typically used the same
way that a traditional file system is used by a regular computer program. Second, an agent
must be able to carry data along when it moves about. We experienced that an agent could
do little unless it could carry state around. Otherwise, its subsequent actions could not be
based on its past actions. This is exemplified by an agent sequentially visiting multiple sites.
On each site a part of an overall computation is done, and the subresults have to be carried
along when the agent leaves the site. We introduced folders for this purpose.

 We have organized the state into folders, which are units of data accessible by agents. Each
folder has an ASCII name. An agent can store or fetch items from this folder. We need
folders of a general nature, the same way we need a common, well-defined interface
between a client and a basic server.

 We have identified several folders of general interest. For instance, a CODE folder that con-
tains the source code of an agent, is vital for transferring agents around. Another example is
a DATA folder containing data that can be associated with the agent in the CODE folder. We
will later come back with more details about these and other folders.

 We found it convenient to group associated folders together. We introduce two new con-
cepts for this. First, we call the collection of folders associated with an agent a briefcase.
Typically, an agent will carry a briefcase along while moving about. At a certain site, the
content of, for instance, the CODE folder can be extracted and executed.

 Second, stationary folders are needed for permanent data repository purposes. We intro-
duce file cabinets for this purpose. The main difference is that file cabinets are stationary
while briefcases can be moved. An agent can typically leave data in a file cabinet, or read or
remove data from it. Figure 2 illustrates these concepts, where a briefcase is sent between
two sites. Site 1 has one local file cabinet, site 2 has two. There are 3 folders in each of the
file cabinets.

FIGURE 2. Briefcase (with folders) and file cabinets (with folders).

site 1 site 2

briefcase

file cabinet

folder

www.manaraa.com

 10

4 Meet - The Basic Abstraction

 Agents can meet. This is a vital concept used for communication and synchronization
between agents. To our surprise, the only abstraction needed to implement the agent model
was:

meet another_agent briefcase

 Agents do not have to communicate by exchanging mail, they simply meet at the same
location and exchange a briefcase. For instance, a client agent may request a service from a
system agent by passing it a briefcase with a folder containing a service specification. The
system agent can return a result folder to the client if necessary.

 Currently, we name the agent to be met using an ASCII name. Figure 3 illustrates the
meeting between two agents at the same site. Agent ag_A now meets with agent ag_B by
delivering a folder to it. Notice that this meeting actually activates ag_B.

FIGURE 3. Meeting between two agents.

 Any communication channel is hidden for the programmer. Programming the internet is
now done by meeting between the communicating parties. This distinguishes this concept
from message based distributed systems. We presume this makes life easier for distributed
application programmers.

5 Where to Meet

 Agents must be able to move. Otherwise, agents located on different machines can not
meet. Our notion of agents moving across the internet is agressive. We mean that they
physically move from machine to machine.

 In earlier TACOMA versions, we had a special transport agent for remote meetings, the
rexec agent [Joha 95]. An agent that wanted to move first specified where to move in its
HOST folder. Then, it had to meet locally with its rexec agent, which was like a taxi ser-
vice for it. The rexec carried a briefcase. The code of an agent ag_A to be activated at
the destination site now had to be represented in this briefcase. This is illustrated in Figure
4, where agent ag_A already has met with rexec and has handed over a briefcase.

ag_A ag_B
folder

site n

www.manaraa.com

 11

FIGURE 4. Moving an agent as part of a briefcase.

 We wanted to make this moving more transparent for the application programmer. First,
we have got rid of the rexec agent. Its functionality is now implemented by the meet
abstraction. A remote meeting used to be like this:

meet rexec briefcase

 The briefcase had a CONTACT folder specifying who to meet with at the site specified in
the HOST folder. This CONTACT agent could be, for instance, ag_tcl extracting Tcl code
from the CODE folder and running it. A meet is now directly with this particular agent:

meet ag_tcl briefcase

 Second, we are attempting to get rid of the manual HOST folder operations. A scheduler is
currently under construction manipulating on this particular folder. An agent programmer
can then leave (some) locality decisions to the TACOMA system. In the current TACOMA
implementation, however, the HOST folder must still be used as described.

 Notice that an agent has to be moved as part of a briefcase. All the agent does, is to wrap
itself up in it’s briefcase and do a meet. Alternatively, the agent is wrapped up by another
agent or a human being.

6 Arriving at a New Place - The Bridge Head for the Arriving Agent

 Agents travel from site to site. We can view an agent visiting a remote site as guest soft-
ware. We will now take a closer look at how to provide a convenient environment for a
guest agent touching base at a remote site.

 The meet must have an entry point, a bridge head, at the destination site. This single entry
point for guest agents lends itself naturally to authentication, access control, accounting, and
provision of fault-tolerance. We use a particular firewall agent, the tac_firewall agent,
for this purpose.

site 1 site 2

 rexec
ag_A ag_B

source code
ag_A

www.manaraa.com

 12

 In the current implementation of TACOMA, tac_firewall basically logs the briefcase
to disk. Then the agent must be extracted from the briefcase and executed. Activating a
new agent is a time consuming task, especially if the guest agent has to be recompiled. To
be able to quickly accept new incoming agents, the tac_firewall agent leaves this task
to another agent, the tac_exec agent. The tac_firewall agent simply hands over the
briefcase to the tac_exec agent and is then ready for a new meet. This extra level of
indirection is used for performance reasons since tac_firewall is not replicated. A
number of tac_exec agent replicas can exist in parallel, only one tac_firewall is
active.

 The tac_exec agent sets up the environment for the guest agent, the place for execution.
As such, it can also restrict the execution environment at this particular site. In Figure 5, the
agent ag_local is not a part of the place environment, but is still running on site 2. A
guest agent activated in the place at site 2 can not meet with ag_local since it is outside
the place.

FIGURE 5. Transferring of a briefcase to site 2.

 Figure 6 illustrates how tac_exec has taken over the responsibility for the arrived brief-
case. The tac_exec agent now activates the original agent specified in the meet. In this
example, this is ag_B. This agent can be a script interpreter that extracts the source code
from the CODE folder and runs the guest agent. Notice now that tac_firewall is ready
again to handle arrival of a new agent.

.

FIGURE 6. Meet with the specified agent ag_B.

site 1 site 2

 meetag_A

ag_Btac_firewall

place

ag_local

 meet

site 1 site 2

ag_B

tac_firewall

place

tac_exec

www.manaraa.com

 13

7 Optimize for RPC

 The agent model is fundamentally different from RPC [Birr 84] in that the clients and serv-
ers may travel in the system to a convenient place where they can meet. The meeting
between the client and server then proceeds much like an RPC, but has much simpler failure
semantics as there can be no message omission failures.

 Agent applications can be structured as a sequence of agents, each one activated upon ter-
mination of its predecessor. This data driven model does not fit well with the client - server
model, a model more familiar to distributed application programmers. As such, we want to
optimize for RPC style of communication between agents.

 The idea is that the client agent sends out an agent doing the remote computation. Then,
this client agent does not terminate, but is suspended for a while. Upon completion of the
remote agent, it travels back to the site of the client agent. There it activates the client agent
again with the result from the remote computation. This is supported in TACOMA by hav-
ing a rpc option as:

meet agent briefcase rpc

 The system agent tac_rpc is used in this meet. The tac_firewall agent can not
block on a RPC like session. At the same time, the communication channel between the two
sites must be open for performance reasons. Therefore, the tac_firewall agent acti-
vates one of the local tac_rpc agents. The idea is that this tac_rpc agent creates a new
connection directly with the client agent. From now on, the tac_firewall is not
involved any more. The tac_rpc now proceeds just like the tac_exec does. Upon
completion of the guest agent, however, the briefcase is sent back using the open connec-
tion. The meet now terminates, and the client agent can use the result from the remote
agent computation.

 Yet an alternative, is to send the continuation part of the calling agent with the remote
agent. The client agent can now be resumed at any site in the system.

8 Summary

 This section has introduced our model for agent based distributed computing. At the level
we are studying, an agent is just a process with its state. This process can move about and
execute at multiple sites in the network.

 An agent can carry state along in a briefcase, or leave state behind in a file cabinet. Agents
meet, they do not communicate by sending messages. If the agents are located at different
places, they must co-locate by moving. The server interface may be kept primitive since it
does not need to provide complex interfaces to optimize for low bandwidth connections.

www.manaraa.com

 14

www.manaraa.com

 15

Chapter 3

Getting Started

Abstract

This chapter gives a detailed description on how to get started with
TACOMA Version 1. This TACOMA version is based on Tcl-TCP, an
extension to Tcl that uses TCP for communication. We introduce how
to write new TACOMA agents written in Tcl/Tk.

1 Introduction

 We have designed and implemented several versions of the TACOMA distributed system
where computations move around and execute in a heterogeneous network environment.
This chapter provides a practical introduction to TACOMA Version 1. This TACOMA ver-
sion is based on Tcl-TCP, an extension to Tcl that allows use of TCP for communication.
We can use Tcl to write simple agents. More advanced graphical user interface agents can
be created through the Tcl extension Tk. Tk is a toolkit for the X Window System.

 We describe how to install TACOMA and relevant software. The reader should then be
able to run some very simple TACOMA agents. The reminder of this document provides
necessary details for construction of more complex agents.

 Throughout, we use the following notation. A Courier font is used for any input given
to the computer, such as UNIX, Tcl and TACOMA commands. The result (feedback from
the computer) appears in Courier italic style. We use the prefix “=> “ to indicate
normal response. For instance, the syntax of activating the TACOMA Tcl interpreter (from
tclsh) is as follows:

 meet ag_tcl <briefcase>

 This means that the named briefcase <briefcase> is given to the ag_tcl agent at a
site specified in the HOST folder in the <briefcase>. If this is a remote ag_tcl agent,
the meet abstraction ensures that the <briefcase> is moved there.

 The name and content of <briefcase> is entirely user specific. The receiver of the
briefcase expects to find certain standard folders in it. For instance, an agent interpreting Tcl
code expects to find this code in the TCLCODE folder of the briefcase it receives.

www.manaraa.com

 16

2 A Simple Agent Example

 We shall now look at a very simple example to illustrate the main features of TACOMA.
To introduce the TACOMA abstractions, we start by sending a simple ASCII string to a
remote place. This string is given to an echo agent at the remote place. The echo agent now
writes the string to a file (in the common case, a UNIX device). Later in this chapter we will
show that there is little differences between sending and displaying a string and sending and
executing an agent.

 The problem is as follows. We want the message “lunch now - DJ” to be displayed at
the remote computer (odin). The message must be displayed on the console /dev/con-
sole by a local echo agent ag_echo.

 Recall that agents (or plain messages) are transferred to a remote agent using the briefcase
abstraction. In this example, we have to fill the briefcase manually, but this can also be done
by an agent (for instance, replicating itself by putting its own source code into the briefcase).
Yet an alternative is to pipe this from a file of predefined values.

 The following commands typed to TACOMA will now create a briefcase out_bc and use
the folders HOST, DATA, and OUTPUT for application specific data. Then, this agent wants
to meet with the ag_echo agent at the remote site odin. This meet will move out_bc
to odin, the site specified in the HOST folder. The meet abstraction uses a CONTACT
folder to keep track of which agent to meet with. This is a pure system specific folder.

 bc_create out_bc
 folder_store out_bc HOST odin
 folder_store out_bc DATA “lunch now - DJ”
 folder_store out_bc OUTPUT /dev/console
 meet ag_echo out_bc

 Next, the message “lunch now - DJ” is displayed at the remote site odin at /dev/
console. The meet does not block on remote events more than necessary. The meet
terminates once the transported briefcase is successfully delivered at the remote place
(odin). In reality, yet another agent, tac_exec, is activated to handle multiple arriving
agents. Figure 1 illustrates this example.

www.manaraa.com

 17

FIGURE 1. Remote echoing example.

Source1 Create briefcase

2 Pack briefcase

3 Meet

4 Transfer briefcase to HOST

5 Deliver briefcase

6 Terminate meet

7 Activate agent

Destination

bc_create out_bc

folder_store out_bc ..

ag_meet

meet ag_echo out_bc

=> out_bc

out_bc
HOST

DATA

OUTPUT

 meet

=> out_bc
HOST

CONTACT

DATA

OUTPUT

=>

out_bc
HOST

CONTACT

DATA

OUTPUT

 meet tac_firewall
out_bc

HOST

CONTACT

DATA

OUTPUT

8 DATA displayed at OUTPUT

tac_exec
out_bc

HOST

CONTACT

DATA

OUTPUT
ag_echo

/dev/console

 lunch now - DJ

CONTACT

tac_exec

www.manaraa.com

 18

3 Installing TACOMA and Relevant Software

 TACOMA Version 1 is based on Tcl-TCP and UNIX (HP-UX). This section will describe
step by step how to obtain and install TACOMA. We presume that Tcl-TCP has been
installed1.

3.1 Installing TACOMA

 The TACOMA source can be obtained from the TACOMA www page at:

URL: http://www.cs.uit.no/DOS/Tacoma/

 There, you will find the file:

 tacoma_v1.0.dist.tar.gz

 You can place this file in your home directory or any other convenient place. In this exam-
ple, the current directory where we install TACOMA is in:

/users/dag/TACOMA/src/

 To extract the different libraries and agents, execute the following UNIX commands:

 gunzip tacoma_v1.0.dist.tar.gz

 tar xf tacoma_v1.0.dist.tar

 A new directory will be created: /users/dag/TACOMA/src/tacoma

 Move to this directory. This directory contains six subdirectories:

• bin/ which contains tcltcp and wishtcp. These files contains compiled versions of Tcl-
TCP and Tk-TCP. If your workstation is not running HP-UX, you can install Tcl-TCP
and Tk-TCP yourself in this directory.

• lib/ which contains the meet abstraction and support agents like ag_echo and
ag_tcl. This directory also contains tacoma.tcl. This file contains Tcl procedures
implementing folder abstractions as folder_store, bc_create, and archive.
The file extensions.tcl contains similar abstractions.

• man/ containing manual pages. You can either add this directory to your man path and
rename the mann entries, or you can use this command to display them directly:

nroff -man <filename> | more

A postscript version (Manuals.ps) of the man pages is also included in the distribution.

1. Tcl-TCP can be obtained from: URL:ftp://ftp.aud.alcatel.com/tcl/extensions/

File: tclTCP2.1.tar.gz

www.manaraa.com

 19

• cabinets/, which contains local cabinets.

• examples/ which contains TACOMA agent examples.

• sysagents/ which contains ag_wish. This is for execution of agents that use the Tk
extension.

The tacoma directory also contains the most vital TACOMA system agents:

• tac_firewall.

• tac_exec.

• tac_rpc.

 The next step is to start TACOMA at your workstation. Notice that your agents can only be
executed locally (unless TACOMA is running somewhere else).

3.2 Running TACOMA

 The following steps must be done to start TACOMA. First, the HOST environment vari-
able must be set. This should already have been set under normal conditions, but in case of
problems do:

setenv HOST hugin

 Your host name in this example is hugin. The following TACOMA environment vari-
ables must also be set:

setenv TACOMAPATH /users/dag/TACOMA/src/tacoma

setenv TACOMAPORT 13147

 It is important that all TACOMA sites that want to communicate specify the same port
number (as long as we do not have a name server). Now the local firewall agent can be
started as a background process:

./tac_firewall &

 A successful start is indicated by:

=> [1] 27301

 TACOMA v1.0

 Agent tac_firewall started at hugin (on port 13147)

 Date: Wed Mar 1 11:27:22 MET 1995

 Path: ‘/users/dag/TACOMA/src/tacoma’

 Starting tac_rpc ... done

www.manaraa.com

 20

 The tac_firewall has now started three tac_rpc agents as part of the start up proce-
dure.

3.3 Run the First TACOMA Agent

 TACOMA is now ready to be used. The next step is to try an interactive example. This
works as follows. First, you must start Tcl-TCP by the following command:

 ./bin/tcltcp

 Then, you must specify where the TACOMA library routines are located:

 set auto_path [linsert $auto_path 0 $env(TACOMAPATH)/lib]

=> /users/dag/TACOMA/src/tacoma/lib /usr/local/lib/tcl

 Notice that the Tcl interpreter always feedbacks the result.

 All agents must have a briefcase, so you must create a briefcase. In this example, we name
the briefcase bc:

 bc_create bc

=> 227694011324451

 The next steps use standard folders as HOST and DATA. Notice that bc is empty (has no
HOST and DATA). The agent given briefcase bc, however, expects to find some predefined
(standard) folders in bc. Consequently, we must specify where to execute the agent. We
put the destination site into the HOST folder in the briefcase bc:

 folder_store bc HOST hugin

=> hugin

 Notice that, in this example, the destination site is the same as the local machine. In this
example, the CONTACT agent is the echo agent that accepts a briefcase as input and displays
the content of the DATA folder on the display specified in the OUTPUT folder. Now, we
must put the ASCII string to be echoed by ag_echo into the DATA folder.

 folder_store bc DATA “lunch again, NS”

=> lunch again, NS

 Finally, we must specify where this data should be displayed:

 folder_store bc OUTPUT “/dev/console”

=> /dev/console

www.manaraa.com

 21

 The bc briefcase is now ready to be sent to the destination site. This is done by the meet
abstraction:

 meet ag_echo bc

=> 0

The meet will now travel to the destination site hugin. The briefcase bc will now be
delivered to the local tac_firewall. The meet will terminate once this delivery is suc-
cessful. The tac_firewall now hands over the briefcase bc to a tac_exec agent.
This tac_exec will now activate the agent specified in the original meet. This agent,
ag_echo, is found in the CONTACT folder. Next, ag_echo is activated. It expects to find
an OUTPUT folder and a DATA folder in the given briefcase. Finally, on console at site
hugin, the following will be displayed:

=> lunch again, NS

 Now, you can leave the Tcl shell (ctrl-d). To check that the agent left the source node and
arrived at the destination node, check the logs:

 ll cabinets/inlog

=> total 2

 -rw-r----- 1 dag users 87 Mar 1 11:59

 hugin.cs.UiT.No.1

 ll cabinets/outlog

=> total 2

 -rw-r----- 1 dag users 87 Mar 1 11:59

 hugin.27307

www.manaraa.com

 22

3.4 Included Examples

 Now, you should try to run some of the included TACOMA examples. Currently, this is the
following agents:

• ag_prompt.tcl hostname text. This agent outputs user specified text at the
console of a remote site (hostname).

• ag_motd.tcl hostnames codefile. This example agent travels to the first
hostname and executes the code found in codefile at that site. You might use
ag.motd.codefile. It may travel to a second site (if two host names are given) and
output the contents of a DATA folder in the console window of that site. If not, it returns
to home.

• ag_query.tcl hostname question. This example agent travels to hostname
and asks the user at that site the question. It will then return with a y/n answer.

• ag_query2.tcl question user [user ...]. This example agent first maps
the user names to host names (using UNIX rwho). Then, it travels to the host(s) (given
by the rwho mapping) and asks the user(s) the question. Finally, it will return with
the answer(s). This agent times out after three minutes on each question. If the user is on
a machine not supporting TACOMA, the agent will register this in the ANSWER folder.

 To illustrate, the first example can be executed by issuing:

 ./examples/ag_prompt.tcl hugin “meeting NOW, boss”

 The output in /dev/console at hugin is:

=> meeting NOW, boss

4 Summary

 This chapter has detailed how to get started with TACOMA Version 1. This is our current
TACOMA implementation based on UNIX and Tcl-TCP. The next step is to create your
own TACOMA agents, a subject addressed in the rest of this document.

www.manaraa.com

23

Chapter 4

The TACOMA API

Abstract

This chapter presents more details on the TACOMA API. The API
includes folder, briefcase and file cabinet abstractions, and abstrac-
tions for meeting and executing agents. We will also discuss how to
structure distributed agent applications based on these abstractions.

1 Introduction

 The previous chapter might have left the reader with the impression that even simple agents
require a complex infrastructure. This would be a wrong impression. A single meet
abstraction, some folder abstractions, and a few TACOMA system agents are sufficient for
writing agents that can roam the internet.

 The good approach to TACOMA is learning by doing. To experience the simplicity in the
TACOMA system interface, you should implement some realistic agent applications. This
chapter provides more details to be used in this process. We will also present some simple
agent structuring techniques and a concrete agent example.

2 Programming the Internet - Folder Abstractions

 We can use the basic agent abstraction meet to transfer control and state around in the
internet. We do not restrict this to agents written in a proprietary language or to binaries.
Source code in whatever language can be moved about by TACOMA. At the receiver side,
however, there must be compiler or interpreter support for this particular language. The
basic system support for this openness is not visible for the agent programmer. The pro-
grammer just uses the basic abstraction:

meet agent briefcase

 This will result in activation of agent with briefcase as argument. The use of the sys-
tem agents tac_firewall and tac_exec are transparently hidden for the application
programmer. These agents use information found in the supplied briefcase to set up the
environment for the guest agent (which is represented in the briefcase as well). Some
basic folder abstractions are necessary for manipulating on folders found in both briefcases
and file cabinets. We will briefly present their interfaces in the following.

www.manaraa.com

24

 First, we need to be able to create a briefcase. The following abstraction creates a local
briefcase called name:

bc_create name

 Similarily, we can delete a local briefcase bc and list the content of bc by the following
abstractions:

bc_discard bc

bc_list bc

 Now, we need abstractions for manipulating on specific folders in a briefcase. The next
abstractions manipulate on folder in bc, the folder being pure, unstructured data:

folder_store bc folder data

folder_append bc folder data

folder_fetch bc folder

folder_delete bc folder

 The folder_store stores some data in folder of briefcase bc. The
folder_append appends data to folder. The abstraction folder_fetch fetches the
content in folder of briefcase bc. The abstraction folder_delete deletes the specific
folder in bc.

 We found it convenient to be able to structure folder data, and we introduced folders with
data elements ordered in lists. TACOMA supports folder abstractions that manipulate on list
structures in specific folders. General structures as, for instance, a stack can now be made.
The following TACOMA abstractions operating on list structures are currently supported:

folder_shift bc folder direction amount data

(shifts the elements of folder in specific direction)

folder_rotate bc folder direction amount

(rotates the elements of folder in specific direction)

 The folder_shift abstraction can be used to implement well-known stack and queue
operations. However, the TACOMA system also supports these more intuitive abstractions
directly. This is:

folder_pop bc folder

(fetches (removes) the first element from folder)

folder_push bc folder data

(adds an element to start of folder)

folder_top bc folder

(reads (not removes) the first element of folder)

www.manaraa.com

25

folder_add bc folder data

(adds an element to end of folder)

 The TACOMA system also supports packing and unpacking of briefcases. This is required
functionality because Tcl arrays can not be moved about. Such a structure can not be
treated as a single object when passed around. The following abstractions packs and
unpacks a briefcase bc:

archive bc folder

(packs bc into folder)

unarchive bc archive

(unpacks archive into bc)

 TACOMA supports file cabinet abstractions similar to those manipulating on briefcases.
Archive and rotate operations are not implemented, but the following abstractions are:

cabinet_create name

(creates a new local cabinet)

cabinet_close cabinet

(closes a cabinet)

cabinet_delete cabinet folder

(deletes a specific folder from cabinet)

cabinet_discard cabinet

(deletes a cabinet and all its folder)

cabinet_fetch cabinet folder

(retrives content of cabinet folder)

cabinet_list cabinet

(list cabinet folders)

cabinet_open cabinet

(opens a cabinet)

cabinet_store cabinet folder data

(stores data in specific folder of cabinet)

www.manaraa.com

26

3 Programming the Internet - Structuring Techniques

 Agent applications can be structured differently. Fortunately, TACOMA agent applications
are not limited to a single paradigm like, for instance, the client-server paradigm. At the
same time, the agent paradigm can be used to attack problems already solved today by other
paradigms. In the following, we will present some general structuring techniques to illus-
trate this.

3.1 Jumping Around - A Sequence of Agents

 An agent application can be structured as a series of code sequences (agents) executed on a
series of sites, one at a time. A typical agent application can be structured as a troop of
agents moving about. A very simple example is to have just two agents in an agent applica-
tion. The first agent executes for a while and terminates. As part of this termination
(through a meet operation), the second agent is started and runs until termination. Also,
this second agent can be a copy of the first agent.

 A more complex example has a large number of agents to be executed at different sites, but
they all have the same structure. The agents are run one after the other, and all but the last
one terminates by a meet. This is illustrated in the event diagram in Figure 1, where the
code pieces of an agent application are structured as a series of three agents A, B and C.
They are executed, one after the other, on three different sites. Any remote operation is
through the meet operation, not through any communication mechanism.

FIGURE 1. Jump execution.

 The source code of each of these agents are packed into the CODE folder of the briefcase
bc. This can be Tcl code that has to be given to the Tcl-interpreter, ag_tcl, at the new
site. This TACOMA agent will extract the code of the agent, set up a virtual environment
for it, and run it.

time
site 1 site 2 site 3

A

B

C

bc

bc

www.manaraa.com

27

 The following pseudo code illustrates this structuring technique:

 # agent_A (at site1)

 pack bc:
 HOST = site2
 CODE = agent_B

 meet ag_tcl bc
 # move bc to site2 and give bc to ag_tcl
 # exit (terminate this agent)

 # agent_B (at site2)

 use data in supplied bc
 do someting

 pack bc:
 HOST = site3
 CODE = agent_C

 meet ag_tcl bc
 # move bc to site3 and give bc to ag_tcl
 # exit (terminate this agent)

 # agent_C (at site3)

 use data in supplied bc

 # exit (terminate whole application)

3.2 Remote Activation

 The agent paradigm can be used to activate another, remote agent. Once activated, the two
agents can proceed totally independent of each other. Hence, we can regard them as two dif-
ferent applications A and B. This structuring technique is illustrated in Figure 2. Agent A
packs a briefcase bc with agent B, then it does a meet with the code interpreter at the desti-
nation site. This system agent will extract the source code for agent B from bc and execute
it. Once the meet operation terminates, the next instruction of agent A can be executed.

www.manaraa.com

28

FIGURE 2. Forking off and activating remote agent.

 The following pseudo code part of agent A and agent B illustrates this structuring tech-
nique:

 #agent_A

 pack bc:
 HOST = site2
 CODE = agent_B

 meet ag_tcl bc
 # meeting done

 if delivery OK then
 next task to do

 # exit (agent_A)

 # agent_B

 use data in supplied bc

 # exit (agent_B)

time
site 1 site 2

A

B

bc

A

www.manaraa.com

29

3.3 Client - Server Style of Computing

 The client-server model is widely adopted in distributed systems. In short, a client issues a
request for some (remote) service and is blocked. A remote server implementing the
requested service will accept the request, carry out the operations to service this request, and
return the final reply to the client. Now, the client is activated and can use the reply.

 TACOMA provides a flexible way to dispatch some remote agent computation. The flexi-
bility now, is that the agent that is to recieve the result, can be sent along with the request.
We call this agent the continuation part of the client agent. The advantage of this structuring
technique is that no dependencies are left on the source node. In the client - server model,
the blocked client is left back on the initial site. Figure 1 illustrates this technique, where
agent C can be seen as the continuation part of agent A. Figure 3 shows that this continua-
tion part can be executed at the same site as where the original request was issued.

FIGURE 3. Client -server style of computing.

 The following pseudo code part of agent A implements the structure of Figure 3, where the
result is sent back to the initial site:

 # agent_A

 pack bc:
 HOST = site2, site1
 CODE = agent_B, agent_C

 meet ag_tcl bc
 # exit (terminate this agent)

time
site 1 site 2

A

B

C

bc

bc

www.manaraa.com

30

 # agent_B

 start execution,
 use data in supplied bc
 carry out service and generate reply
 pack bc:
 HOST = site2, site1
 CODE = agent_B, agent_C
 RESULT = reply

 meet ag_tcl bc
 # exit (terminate this agent (remote procedure))

 # agent_C

 start execution
 use data (RESULT) in supplied bc

 # exit (terminate application)

3.4 Optimize for RPC

 TACOMA is optimized for RPC interactions. The calling agent A can now be blocked
while the remote agent B is moving about carrying out the requested service. This server
agent B will travel back to the initial site with the final result in its briefcase bc. There,
agent A will be re-activated and can use the content of bc. This is illustrated in Figure 4.

FIGURE 4. RPC style of computing.

time
site 1 site 2

A

B

A

bc

B
L
O
C
K bc

www.manaraa.com

31

 We introduce the following option in the meet abstraction to support this optimization:

 meet ag_tcl bc rpc

 The following pseudo code part of agent A an B illustrates this structuring technique:

 # agent_A

 pack bc:
 HOST = site2, site1
 CODE = agent_B

 meet ag_tcl bc rpc
 # reply now received

 use data (RESULT) from agent_B computation

 # exit (terminate application)

 # agent_B

 start execution
 use data in supplied bc
 carry out service and generate reply
 pack bc:
 (HOST = site2, site1)
 RESULT = reply

 # exit (terminate this agent (remote procedure))

3.5 Event Synchronization

 The agent paradigm is suitable for event-driven programming. That is, when a a specific
event occurs, a certain piece of code (an agent) must be executed. Examples of events can
be, for instance, that temperature is exceeding a threshold value, a user is logging into a
machine, or a computation has terminated.

 We use the same structuring technique as previously described. At least three different
agents are needed; one agent that creates and sends out another monitoring agent, the event
monitoring agent itself, and the agent to be activated when the event occurs.

www.manaraa.com

32

 A distributed application can now be structured with an event monitoring agent agent_B,
who continuously monitors its environment. When the specific event occurs, it will activate
another agent agent_C. This is illustrated in Figure 5.

FIGURE 5. Event based agent activation.

 One concrete agent_C example is simply to notify a (remote) user that the event has
occurred. This can be done by, for instance, a new window popping up on the user’s screen
with monitoring information.

 This pseudo code illustrates how to structure an application doing some remote monitoring:

 # agent_A

 pack bc:
 HOST = site2, site1
 CODE = agent_B, agent_C

 meet ag_tcl bc
 # exit (terminate creating agent)

time
site 1 site 2

A

B

C

bc

bc event

www.manaraa.com

33

 # agent_B

 loop:
 monitor event
 upon event exit loop
 end loop
 pack bc:
 Update STATUS folder in bc
 HOST = site2, site1

 meet ag_tcl bc
 # exit (terminate this agent (remote procedure))

 # agent_C

 start execution
 pop up Tk display window
 display monitoring information

 # exit (notification agent)

3.6 Sharing Common State

 Applications must be able to share common state. One way is simply to use agents as cou-
riers moving this shared state about. Another approach is to use file cabinets and shared
folders for this purpose.

 Figure 6 illustrates this concept, where agent_A and agent_B both access a shared
folder through agent_C. This agent_C can be site local guarding this file cabinet, or it
can be shipped in for this purpose.

FIGURE 6. Sharing common state.

time
site 1 site 2 site 3

A

C

bc

B
bc’

C

www.manaraa.com

34

 The following pseudo code illustrates this structuring technique:

 # agent_A and agent_B

 pack bc:
 HOST = site2
 CODE = agent_C
 DATA = shared state

 meet ag_tcl bc
 # exit (terminate) or proceed execution

 # agent_C

 wait for access:
 open file cabinet
 access shared folder

 # exit (terminate this agent)

3.7 Parallel Processing

 A final structuring example illustrates how to do parallel processing. A number of agents
can be activated and executed in parallel. Upon completion, each agent might meet with a
controller assembling the final result. This is illustrated in Figure 7, where the agent replicas
of agent_B execute in parallel at two different sites. Upon completion, they both activate
the controller agent agent_C located at another site.

FIGURE 7. Parallel processing with agents.

time
site 1 site 2 site 3

A

B

bcbc

B

site 4

C

C

bc

bc

www.manaraa.com

35

 Notice that this scheme also applies for fault-tolerant programming of agents. The agent
replicas of agent_B provide redundancy, agent_C is the voting agent needed to mask
the result of the redundant computations. This agent_C can also be sent along with the
briefcase bc. File cabinets must then be used at the rendezvous site for voting purposes.

 This pseudo code illustrates how it is possible to build a more fault-tolerant agent applica-
tion through redundancy:

 # agent_A

 pack bc:
 HOST = site2, site4
 CODE = agent_B, agent_C

 meet ag_tcl bc
 # send first replica out

 re-pack bc:
 HOST = site3, site4
 meet ag_tcl bc
 # send second replica out
 # exit (terminate)

 # agent_B

 start execution
 generate (this version of the) result
 pack bc:
 HOST = site_i, site4
 RESULT = result

 meet ag_tcl bc
 # exit (terminate this replicated agent)

 # agent_C

 open file cabinet
 access shared (voting) folder
 if sufficient input:
 vote
 else
 deposit voting contribution

 # exit (terminate or notify another agent)

www.manaraa.com

36

4 Writing an Agent - An Example

 A concrete Tcl agent example will now be presented. In functionality, this agent travels to
a site specified by the user. There, the agent found in the CODE folder of the briefcase
my_bc is executed by the local ag_tcl. Finally, it travels to a third site (default is the ini-
tial site) and outputs the contents of the DATA folder in the console window.

 This is the Tcl code of the agent creating and sending another agent out in the network:

#!./bin/tcltcp

set auto_path [linsert $auto_path 0 ./lib]

get the site to execute the agent and the name
of the file with the agent source code:

if {$argc != 2} {
 puts “Usage: $argv0 \[hostnames\] \[codefile\]\n”
 exit
}

create and pack briefcase:

bc_create my_bc
 folder_store my_bc HOST [lindex $argv 0] ““
 folder_store my_bc RETURNHOST $env(HOST)
 set file [open [lindex $argv 1] r]
 folder_store my_bc MYCODE [read -nonewline $file]
 close $file
 folder_store my_bc TCLCODE “MYCODE” ““
 folder_store my_bc OUTPUT “/dev/console”

meet with and deliver the briefcase to ag_tcl
at the remote site:

meet ag_tcl my_bc

optional to check status of meeting:

puts [folder_fetch my_bc STATUS]
exit

www.manaraa.com

37

 This is the agent code to execute remotely (found in file specified by the user):

proc main {bc} {
 upvar $bc loc_bc
 set error [catch {open “/etc/motd” r} file]
 if { $error == 0 } {
 folder_store loc_bc DATA [read -nonewline $file]
 close $file
 } else {
 folder_store loc_bc DATA “No msg of the day at host”
 }
 meet ag_echo loc_bc
 return 0
}

5 Summary

 This chapter has detailed the TACOMA API. It basically consists of a single meet abstrac-
tion with optional RPC semantics. In addition, a variety of folder, file cabinet and briefcase
abstractions are supported.

 Distributed applications can be structured as a troop of agents moving about. We have
sketched how to solve some of the more common structuring problems in distributed envi-
ronments. A concrete agent example shows how to pack an agent into a briefcase and how
to transfer this to a remote site for execution. This is done without any networking syntax
involved.

www.manaraa.com

38

www.manaraa.com

 39

References

[Birr 84] Birrell, A.D., and B.J. Nelson. Implementing Remote Procedure Calls, ACM
Trans. Comp. Sys., 2, (Feb. 1984), pp. 39-59.

[Card 95] Cardelli, L., A Language with Distributed Scope, Computing Systems, 8 (1),
Winter 1995, pp. 27-59.

[Chau 92] Chaum, D., Achieving Electronic Privacy, Scientific American, 267 (2), August
1992, pp. 96-101.

[Joha 93] Johansen, D. "StormCast: Yet Another Exercise in Distributed Computing", in
Distributed Open Systems, (eds. Brazier, F., Johansen, D.), IEEE Computer Society Press,
USA, Oct. 93, pp. 152-174.

[Joha 94] Johansen, D., Hartvigsen, G. Convienient Abstractions in StormCast Applica-
tions. Proceedings of the 6th. ACM SIGOPS European Workshop: “Matching Operating
Systems to Application Needs” (Sept. 12-14, 1994, Dagstuhl, Germany), pp. 11-16.

[Joha 95] Johansen, D., Renesse, R. van, and Schneider, F.B., Operating System Support
for Mobile Agents, IEEE 5th Workshop on Hot Topics in Operating Systems (HOTOS-V),
Washington, USA, May 1995, pp. 42-45.

[Oust 94] Ousterhout, J.K., Tcl and the Tk Toolkit, Addison-Wesley, ISBN 0-201-63337-X.

[Rene 94] Renesse, R. van, Hickey, T.M., and Birman, K.P., Design and Performance of
Horus: A Lightweight Group Communications System, Cornell Tech. Report, TR 94-1442,
August 1994.

[Riec 94] Riecken, D. (guest editor), Intelligent Agents, Commun. of the ACM, 37 (7), July
1994, pp. 19-21.

[Whit 94] White, J.E., Telescript Technology: The Foundation for the Electronic Market-
place, General Magic White Paper, General Magic Inc., 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

